
Thomas J. Kacpura
ASRC Aerospace Corporation, Cleveland, Ohio

Louis M. Handler
Glenn Research Center, Cleveland, Ohio

Janette C. Briones
Glenn Research Center, Cleveland, Ohio

Charles S. Hall
Analex Corporation, Cleveland, Ohio

Updates to the NASA Space Telecommunications
Radio System (STRS) Architecture

NASA/TM—2008-215052

January 2008

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientifi c and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientifi c and

technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to help@

sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 301–621–0134

• Telephone the NASA STI Help Desk at
 301–621–0390

• Write to:

 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320

Thomas J. Kacpura
ASRC Aerospace Corporation, Cleveland, Ohio

Louis M. Handler
Glenn Research Center, Cleveland, Ohio

Janette C. Briones
Glenn Research Center, Cleveland, Ohio

Charles S. Hall
Analex Corporation, Cleveland, Ohio

Updates to the NASA Space Telecommunications
Radio System (STRS) Architecture

NASA/TM—2008-215052

January 2008

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Prepared for the
2007 Software Defi ned Radio Technical Conference and Product Exposition
sponsored by the SDR Forum
Denver, Colorado, November 5–9, 2007

Acknowledgments

The authors would like to acknowledge the support of the NASA STRS project team and the SDR Forum Space Working
Group (SWG). A key recommendation from the SWG was implemented, which was to align with the OMG

SWRadio specifi cation, which has improved the API defi nition.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Level of Review: This material has been technically reviewed by technical management.

NASA/TM—2008-215052 1

Updates to the NASA Space Telecommunications
Radio System (STRS) Architecture

Thomas J. Kacpura

ASRC Aerospace Corporation
Cleveland, Ohio 44135

Louis M. Handler

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Janette C. Briones

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Charles S. Hall

Analex Corporation
Cleveland, Ohio 44135

Abstract

This paper describes an update of the Space
Telecommunications Radio System (STRS) open architecture
for NASA space based radios. The STRS architecture has
been defined as a framework for the design, development,
operation and upgrade of space based software defined radios,
where processing resources are constrained. The architecture
has been updated based upon reviews by NASA missions,
radio providers, and component vendors. The STRS Standard
prescribes the architectural relationship between the software
elements used in software execution and defines the
Application Programmer Interface (API) between the
operating environment and the waveform application.
Modeling tools have been adopted to present the architecture.
The paper will present a description of the updated API,
configuration files, and constraints. Minimum compliance is
discussed for early implementations. The paper then closes
with a summary of the changes made and discussion of the
relevant alignment with the Object Management Group
(OMG) SWRadio specification, and enhancements to the
specialized signal processing abstraction.

Introduction
Since the original release of the STRS architecture (refs. 1

and 2), NASA has received comments. A consistent theme has
been to increase the detail of the architecture. NASA has
recently released STRS Architecture Standard Version 1.01
(ref. 3), which is an update and has improved the details of the
software architecture. A key focus of the updates has been
refining the STRS infrastructure and the specific STRS API.

The STRS infrastructure is part of the General Purpose
Processor (GPP) Operating Environment (OE) and provides
the functionality for the interfaces defined by the STRS API
specification. Once the waveform is deployed, the
infrastructure supports the waveform operations through the
STRS API and its internal subsystems. The infrastructure is
composed of multiple subsystems that interoperate to provide
the functionality to operate the radio. The components shown
in figure 1 represent the high level subsystems and services
needed to control waveforms and applications within the radio
platform. These services are provided by the platform
infrastructure and support applications as they execute within
the radio platform.

The infrastructure implements the STRS API. The STRS
API is the well-defined set of interfaces used by the waveform
applications to access specific radio functions or used by the
infrastructure to control the waveform applications. The STRS
API provides the interfaces that allow applications to be
instantiated and use platform services. This API also enables
communication between waveform and application
components. The STRS API includes support of external
interface commands for normal radio operations. It hides the
routine names actually used by the STRS infrastructure from
the waveforms to facilitate portability. Although the STRS
infrastructure may use any combination of Portable Operating
System Interface (POSIX), real time operating system
(RTOS), board support package (BSP) functions, or other
infrastructure methods to support radio functions, which may
vary on different platforms, the STRS API will be identical to
allow portability.

NASA/TM—2008-215052 2

Figure 1.—STRS infrastructure.

STRS API
The STRS API provides an open software specification for

the application engineer to develop STRS waveform
application programs. The goal is to have a standard API
available to cover all application program requirements so that
the waveform programs can be reused on other hardware
systems with minimal porting effort and cost of the waveform
software (and firmware) development. Two trade-offs in the
development of the API specification are a) the larger the API
specification then the greater the software overhead, which
affects size, weight, and power (SWaP) and b) standardization
of the API which limits the ability to use custom routines for
optimization. The STRS API definition minimizes
dependencies on specific capabilities of the GPPs.

The API layer specification decouples the intellectual
property rights of platform, waveform, and module
developers. The API layer allows development and
interoperability of different radio aspects while protecting the
investment of the developers.

STRS Application Control API

A key aspect of a software architecture is the definition of
the API that is used to facilitate software configuration and
control of the target platform. The philosophy, on which the
STRS architecture is based, avoids the conflict between open
architecture and proprietary implementations by specifying a
minimum API used to execute waveform applications and
deliver data and control messages to installed hardware
components.

Figure 2.—STRS waveform/device structure.

Figure 2 is a class diagram in Unified Modeling Language
(UML) that illustrates the inheritance between the classes and
the corresponding implementation objects in C++. In a C or
C++ implementation, it depicts the hierarchy of include files.
The figure also shows a grouping of API. A waveform or
service is a STRS Application implementation object that
must implement the STRS Application Control API. The
STRS Application Control API is comprised of the STRS
ComponentIdentifier, STRS ControllableComponent, STRS
LifeCycle, STRS PropertySet, and STRS TestableObject API
groups.

STRS requires the methods shown in table 1 to be
implemented by each waveform or service. The STRS
Application Control API exhibits similar functionality to a
Resource Interface in the OMG SWRADIO or SCA
specifications except that the notion of ports has been replaced
with the optional source or sink. The API may be implemented
using the same OMG SWRadio Platform-Independent Model
(PIM).

NASA/TM—2008-215052 3

TABLE 1.—STRS APPLICATION CONTROL API
WF_Configure Set values for one or more properties in

the waveform.
WF_GroundTest Perform unit and system testing usually

done on ground before deployment. The
testing may include calibration. The
method is similar to WF_RunTest except
that it contains more extensive testing that
can be eliminated for actual flight.

WF_Initialize Initialize the waveform to a known initial
state. Used to restart from the beginning
rather than from where it left off.

WF_Query Obtain values for one or more properties
in the waveform.

WF_Read Method used to obtain data from the
waveform. Optional.

WF_ReleaseObject Free any resources the waveform has
acquired. An example would be to close
open files or devices.

WF_RunTest Test the waveform. The tests provide aid
in isolating faults within the waveform.

WF_Start Begin normal waveform processing.

WF_Stop End normal waveform processing.

WF_Write Method used to send data to the
waveform. Optional.

STRS Infrastructure Application Control API

The Infrastructure Application Control methods shown in
table 2 correspond to the STRS Application Control API exactly
and are used to access those methods. These methods are
implemented by the STRS infrastructure but may be used by any
STRS Application or any part of the infrastructure that is desired
to be implemented in a portable way. A handle ID is an identifier
that is used to control access to applications and resources such as
another waveform, device, file, or message queue.

TABLE 2.—STRS INFRASTRUCTURE APPLICATION
CONTROL API

STRS_Configure Set values for one or more properties
in the waveform (or device).

STRS_GroundTest Perform unit and system testing,
including calibration, usually done on
ground pre-deployment.

STRS_Initialize Initialize the waveform. Used to restart
from the beginning rather than from
where it left off.

STRS_Query Obtain values for one or more
properties in the waveform (or device).

STRS_Read Method used to obtain data from a
source or supplier.

STRS_ReleaseObject Free any resources the waveform has
acquired. An example would be to
close open files or devices.

STRS_RunTest Perform built in test.

STRS_Start Begin normal waveform processing.

STRS_Stop End normal waveform processing.
STRS_Write Method used to send data to a sink.

STRS Infrastructure Application Setup API

The Infrastructure Application Control Setup methods
shown in table 3 are used in general or to control one
waveform from another. A handle ID is an identifier that is
used to control access to applications and resources such as
another waveform, device, file, or message queue.

TABLE 3.—STRS INFRASTRUCTURE APPLICATION
CONTROL SETUP API

STRS_AbortApp Abort a waveform or service
STRS_GetErrorQueue Transform an error code into an

error queue.
STRS_GetSizeOfProperties Compute number of bytes in a

STRS Properties struct
containing a given maximum
number of STRS Property
name/value structs. The number
returned is used to allocate space
for the STRS Properties struct.

STRS_HandleRequest The table of object names is
searched for the given name and
the handle ID is returned that is
used to control access to another
waveform, device, file, or
message queue.

STRS_InitComplete Return initialization completion
status when the task is initiated
independent of the completion.

STRS_InstantiateApp Instantiate a waveform or service
(or device).

STRS_IsOK Return true, if return value of
previous call is not an error code.

STRS_Log Send log message for distribution
as appropriate. Time stamp is
added automatically.

STRS_RemoveApp Remove specified waveform or
service from persistent storage.

STRS_UploadComplete Return upload completion status.
STRS_UploadRequest Begin or continue upload.

STRS Infrastructure Device Control API

STRS Devices are controlled using the STRS Infrastructure
Device Control API shown in table 4. A STRS Device is a
proxy for the data and/or control path to the actual hardware.
A STRS Device may use any available platform-specific
Hardware Abstraction Layer (HAL) to communicate with and
control the specialized hardware. A STRS Device may also be
used to hide the details of networking from the waveform. The
purpose of abstracting the hardware interfaces in a standard
manner is to make the waveforms more portable. A STRS
Device is a STRS application that responds to the STRS
Infrastructure Application Control API calls as well as to the
following additional calls.

NASA/TM—2008-215052 4

TABLE 4.—STRS INFRASTRUCTURE DEVICE
CONTROL API

STRS_DeviceClose Close the device.

STRS_DeviceFlush Send any buffered data immediately
to the underlying hardware and clear
the buffers.

STRS_DeviceLoad Load a binary image to the device.
STRS_DeviceOpen Open the device.
STRS_DeviceReset Reinitialize the device. Reset is

normally used after the device has
been started and stopped, before
starting the device again.

STRS_DeviceStart Start the device.
STRS_DeviceStop Stop the device.
STRS_DeviceUnload Unload the device.
STRS_SetISR Set the Interrupt Service Routine for

the device.

STRS Infrastructure Memory API

These Infrastructure Memory methods shown in table 5 are
used to isolate the memory manipulation on small and large
platforms so that the memory is used in a portable way. On a
small platform, the total available memory may be severely
limited. On a large platform, the total available memory may
be limited only by the size of a disk swap area. The same
methods are used in both situations for portability.

TABLE 5.—STRS INFRASTRUCTURE MEMORY API
STRS_Clone Acquire a section of memory to use, copy

data into it, and return the new memory
location.

STRS_Release Release a section of memory previously
acquired with STRS_Clone or
STRS_Reserve.

STRS_Reserve Acquire a section of memory to use and
return the new memory location.

STRS Infrastructure Messaging API

The messaging methods shown in table 6 allow STRS
applications to use a single target handle ID to send messages
between applications or to multiple parts of the radio. The
ability for waveforms to communicate with other STRS
applications is crucial for the operation of radio services as well
as separating the receive and transmit functionality between two
waveforms. The messaging API is implemented using a form of
the Observer or Publish-Subscribe design pattern.

TABLE 6.—STRS INFRASTRUCTURE MESSAGING API
STRS_QueueCreate Create a queue.
STRS_QueueDelete Delete a queue.
STRS_Register Register an association between a

publisher and subscriber.
STRS_UnRegister Remove an association between a

publisher and subscriber.

STRS Infrastructure Time Control API

These Infrastructure Time Control methods shown in
table 7 are used to access the hardware and software timers.

TABLE 7.—STRS INFRASTRUCTURE TIME CONTROL API

STRS_GetNanoseconds Get the number of nanoseconds
from the STRS_TimeWarp object.

STRS_GetSeconds Get the number of seconds from
the STRS_TimeWarp object.

STRS_GetTime Get the current base time and the
corresponding time of a specified
type.

STRS_GetTimeWarp Get the STRS_TimeWarp object
containing the number of seconds
and nanoseconds in the time
interval.

STRS_SetTime Set the current time in the specified
clock/timer by adjusting the time
offset.

STRS_Synch Synchronize clocks. The action
depends on whether the clocks to
be synchronized are internal or
external.

Configuration Files
STRS configuration files shall contain platform and

waveform specific information for the installation and
customization of waveforms. Platform configuration files
provide the STRS infrastructure with information on what
hardware devices and modules are installed in the system. The
configuration files are used by the STRS Infrastructure to
determine what files, devices, waveforms, and services are
used by the STRS radio. The name of the starting
configuration file is specified on the command line when
initializing the STRS Infrastructure. If none is specified, a
mission specific default would be employed. A waveform
(STRS application) configuration file contains specific
information that allows STRS to instantiate and configure the
application.

The format of the configuration files shall be defined in
Extensible Markup Language (XML) using an XML Schema.
The XML Schema Definition Language is an XML language
for describing and constraining the content of XML
documents. The XML can be preprocessed to optimize space
on the STRS Radio memory while keeping the equivalent
content.

One approach to accomplish the preprocessing, used in the
STRS Reference Implementation, is to use an XSL
transformation. Here the XSLT language, which itself uses
XPath, was used to specify how to transform the given XML
input into the desired output. One suggestion for a more
compact representation is S-Expressions, which could be used
if a more compact representation is desired.

NASA/TM—2008-215052 5

Platform Configuration Files

The contents of a platform configuration file include a list
of hardware modules having memory able to contain data and
executable software. There is a unique module name for each
hardware module accessible from the current GPP. The
platform configuration file includes a list of memory areas of
various types (e.g., ROM, RAM), sizes, units, and access. The
platform configuration file includes a memory map list which
provides the base name, base address, memory size, and
memory read and write access. It also contains a module type
which is the name of the hardware type. The module type may
be the GPP, RF, FPGA, DSP, ASIC, etc.

STRS Infrastructure Configuration Files

The STRS Infrastructure configuration data is one example
of the data that defines the infrastructure. The infrastructure
configuration file includes a list of files to read, write, or
append, from multiple locations using a handle ID. The file
data includes a handle name, file name, file type and file
access. The infrastructure configuration file includes a list of
devices to read or write from multiple locations using a handle
ID. The device data has a handle name, device name, device
type, device access, and attribute list. The infrastructure
configuration file includes a list of attributes that are tested
against specific values to indicate the health of the system.
The infrastructure configuration file includes a queue list
containing the correspondences between publishers and
subscribers.

STRS Waveform Configuration Files

A waveform (STRS application) configuration file contains
specific information that 1) allows STRS to instantiate the
application; 2) provides default configuration values; 3)
provides connection references to devices, queues, and
services needed by the application.

An example of a waveform configuration file in XML is
shown in figure 3.

The contents of a STRS waveform configuration file
include a handle name, that is a unique shortened form of the
waveform name used in messages and a waveform name,
(usually a shortened form of the waveform that will be the
C++ class name). Access to the waveform may be specified as
read, write, both, or none. Read indicates that the waveform
implements WF_Read(). Write indicates that the waveform
implements WF_Write(). The initial state is the state at which
the waveform is left after processing the configuration file.
The state may be instantiated or running. A file list contains a
list of files to be loaded for execution and includes the file
name and the target module name. An attribute list contains
the list of properties having a name and value pair set as the
default during initialization.

Figure 3.—Example STRS waveform configuration file in XML.

STRS Minimum Compliance
A minimum compliance has been defined for systems

installed on constrained space platforms and that supports
upwards compatibility on larger platforms. It is expected that
this minimum compliance will be satisfactory on early STRS
platforms, enabling the experience and lessons learned to
feedback into further architecture definition. The minimum
compliance builds upon the previously defined APIs and
configuration files and adds the following additional elements
discussed below.

Minimum compliance requires publishing the Hardware
Interface Definition (HID) and HAL, employing configuration
files defined in XML (described by a XML schema), the use
of selected POSIX subsets, and using the minimum list of the
STRS API. The HID has been compared to an Interface
Control Definition, with the requirement to publish interfaces
and the operating requirements of the hardware system after
delivery. The HAL in the GPP is software that configures,
controls, and communicates with specialized hardware by
abstracting the physical hardware interfaces. The HAL API
shall be published so that specialized hardware made by one
company may be integrated with the STRS Infrastructure
made by a different company. Platform and waveform
configuration files require the use of XML to describe the
contents; however an approach for the expected
transformation to a more compact form to meet space memory
requirements is suggested but not mandated as part of the
architecture.

NASA/TM—2008-215052 6

The STRS API is split into the STRS Application Control
API and the STRS Infrastructure API. A waveform is a STRS
Application and waveform developers must implement the
STRS Application Control API listed above and defined in the
STRS Architecture Standard. The STRS Infrastructure is part
of the OE and provides the functionality for the interfaces
defined by the STRS API specification. The STRS
Infrastructure must implement the STRS API listed to support
applications as they execute within the radio platform.
Additional functionality must be implemented in the STRS
infrastructure for radio robustness and mission dependent
requirements. In addition, radio developers must provide the
HID and HAL documentation.

The STRS architecture requires that compliant radios must
use a POSIX conformant RTOS, or provide a POSIX
abstraction layer (minimum POSIX real time profile PSE51)
to provide the POSIX API missing from RTOS. For
constrained resource platforms, with limited software
evolutionary capability, where the waveform signal processing
is implemented in specialized hardware, the supplier may
request permission from NASA to only implement a subset of
POSIX PSE51 as required by the portion of the waveforms
residing on the GPP. The waveforms created for this platform
must be upward compatible to a larger platform containing
POSIX PSE51. If none of the waveforms for a constrained
resource platform use any of the interfaces in a unit of
functionality, then the supplier may request permission from
NASA to eliminate that entire unit of functionality.

The difference between a POSIX conformant RTOS and a
non-conformant RTOS is illustrated in figure 4. On the left
side, the POSIX AEP is provided entirely by the RTOS. The
POSIX API is included for the RTOS. On the right side, if the
RTOS is not POSIX AEP conformant then a POSIX
abstraction layer must be provided to implement the required
missing functionality.

Figure 4.—POSIX compliant versus conformant.

Conclusion
The STRS architecture has been updated, focusing on key

elements of the software architecture. Reference
implementations and early STRS compliant radios are being
developed, and minimum compliance criteria are described.
Future planned updates include adding more detail to
specialized signal processing abstraction, the hardware
architecture, and providing a waveform developer’s guide.

References
1. “Space Telecommunications Radio System Open

Architecture Description,” December 2005.
2. Thomas J. Kacpura and Richard C. Reinhart, “STRS

Architecture Standard,” Revision 1.0, April 2006.
3. Thomas J. Kacpura and Richard C. Reinhart, “STRS

Architecture Standard,” Revision 1.01, June 2007.

POSIX Conformant RTOS

RTOS

POSIX
AEP

POSIX Compliant RTOS

RTOS

POSIX
Abstraction

Layer

POSIX
Compliant

RTOS

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
01-01-2008

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Updates to the NASA Space Telecommunications Radio System (STRS) Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Kacpura, Thomas, J.; Handler, Louis, M.; Briones, Janette, C.; Hall, Charles, S.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 439432.04.07.01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
 REPORT NUMBER
E-16262

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORS
 ACRONYM(S)
NASA

11. SPONSORING/MONITORING
 REPORT NUMBER
NASA/TM-2008-215052

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category: 17
Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper describes an update of the Space Telecommunications Radio System (STRS) open architecture for NASA space based radios.
The STRS architecture has been defined as a framework for the design, development, operation and upgrade of space based software defined
radios, where processing resources are constrained. The architecture has been updated based upon reviews by NASA missions, radio
providers, and component vendors. The STRS Standard prescribes the architectural relationship between the software elements used in
software execution and defines the Application Programmer Interface (API) between the operating environment and the waveform
application. Modeling tools have been adopted to present the architecture. The paper will present a description of the updated API,
configuration files, and constraints. Minimum compliance is discussed for early implementations. The paper then closes with a summary of
the changes made and discussion of the relevant alignment with the Object Management Group (OMG) SWRadio specification, and
enhancements to the specialized signal processing abstraction.
15. SUBJECT TERMS
Space communication; Spacecraft communication; Radio communication system

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

12

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

a. REPORT
U

b. ABSTRACT
U

c. THIS
PAGE
U

19b. TELEPHONE NUMBER (include area code)
301-621-0390

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

